Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.010
Filtrar
1.
Eur J Pharmacol ; 972: 176558, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614382

RESUMO

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.

2.
Mov Disord ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651526

RESUMO

BACKGROUND: Identifying individuals with Parkinson's disease (PD) already in the prodromal phase of the disease has become a priority objective for opening a window for early disease-modifying therapies. OBJECTIVE: The aim was to evaluate a blood-based α-synuclein seed amplification assay (α-syn SAA) as a novel biomarker for diagnosing PD in the prodromal phase. METHODS: In the TREND study (University of Tuebingen) biennial blood samples of n = 1201 individuals with/without increased risk for PD were taken prospectively over 4 to 10 years. We retrospectively analyzed blood samples of 12 participants later diagnosed with PD during the study to detect and amplify pathological α-syn conformers derived from neuronal extracellular vesicles using (1) immunoblot analyses with an antibody against these conformers and (2) an α-syn-SAA. Additionally, blood samples of n = 13 healthy individuals from the TREND cohort and n = 20 individuals with isolated rapid eye movement sleep behavior disorder (iRBD) from the University Hospital Cologne were analyzed. RESULTS: All individuals with PD showed positive immunoblots and a positive α-syn SAA at the time of diagnosis. Moreover, all PD patients showed a positive α-syn SAA 1 to 10 years before clinical diagnosis. In the iRBD cohort, 30% showed a positive α-syn SAA. All healthy controls had a negative SAA. CONCLUSIONS: We here demonstrate the possibility to detect and amplify pathological α-syn conformers in peripheral blood up to 10 years before the clinical diagnosis of PD in individuals with and without iRBD. The findings of this study indicate that this blood-based α-syn SAA assay has the potential to serve as a diagnostic biomarker for prodromal PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Int Immunopharmacol ; 133: 112065, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608448

RESUMO

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.

4.
Front Med ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600350

RESUMO

Crosstalk between cancer cells and the immune microenvironment is determinant for liver cancer progression. A tumor subpopulation called liver cancer stem cells (CSCs) significantly accounts for the initiation, metastasis, therapeutic resistance, and recurrence of liver cancer. Emerging evidence demonstrates that the interaction between liver CSCs and immune cells plays a crucial role in shaping an immunosuppressive microenvironment and determining immunotherapy responses. This review sheds light on the bidirectional crosstalk between liver CSCs and immune cells for liver cancer progression, as well as the underlying molecular mechanisms after presenting an overview of liver CSCs characteristic and their microenvironment. Finally, we discuss the potential application of liver CSCs-targeted immunotherapy for liver cancer treatment.

5.
Am J Cancer Res ; 14(3): 1419-1432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590411

RESUMO

The pathogenesis of glioma has remained unclear. In this study, it was found that high expression of the outer dense fibers of sperm tail 3B (ODF3B) in gliomas was positively correlated with the grade of glioma. The higher the grade, the worse the prognosis. ODF3B is closely related to the growth and apoptosis of glioma. In terms of mechanism, ODF3B was found to affect the proliferation and apoptosis of glioma through the JAK1 and JAK2/STAT3 pathways. ODF3B was also found to affect the growth and apoptosis of glioma in vivo. We conclude that ODF3B affects glioma proliferation and apoptosis via the JAK/STAT pathway and is a potential therapeutic target.

6.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611801

RESUMO

Inflammation is an essential contributor to various human diseases. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation.


Assuntos
Citrus , Flavonoides , Animais , Humanos , Flavonoides/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Modelos Teóricos
7.
World J Gastrointest Oncol ; 16(2): 475-492, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425404

RESUMO

BACKGROUND: B56ε is a regulatory subunit of the serine/threonine protein phosphatase 2A, which is abnormally expressed in tumors and regulates various tumor cell functions. At present, the application of B56ε in pan-cancer lacks a comprehensive analysis, and its role and mechanism in hepatocellular carcinoma (HCC) are still unclear. AIM: To analyze B56ε in pan-cancer, and explore its role and mechanism in HCC. METHODS: The Cancer Genome Atlas, Genotype-Tissue Expression, Gene Expression Profiling Interactive Analysis, and Tumor Immune Estimation Resource databases were used to analyze B56ε expression, prognostic mutations, somatic copy number alterations, and tumor immune characteristics in 33 tumors. The relationships between B56ε expression levels and drug sensitivity, immunotherapy, immune checkpoints, and human leukocyte antigen (HLA)-related genes were further analyzed. Gene Set Enrichment Analysis (GSEA) was performed to reveal the role of B56ε in HCC. The Cell Counting Kit-8, plate cloning, wound healing, and transwell assays were conducted to assess the effects of B56ε interference on the malignant behavior of HCC cells. RESULTS: In most tumors, B56ε expression was upregulated, and high B56ε expression was a risk factor for adrenocortical cancer, HCC, pancreatic adenocarcinoma, and pheochromocytoma and paraganglioma (all P < 0.05). B56ε expression levels were correlated with a variety of immune cells, such as T helper 17 cells, B cells, and macrophages. There was a positive correlation between B56ε expression levels with immune checkpoint genes and HLA-related genes (all P < 0.05). The expression of B56ε was negatively correlated with the sensitivity of most chemotherapy drugs, but a small number showed a positive correlation (all P < 0.05). GSEA analysis showed that B56ε expression was related to the cancer pathway, p53 downstream pathway, and interleukin-mediated signaling in HCC. Knockdown of B56ε expression in HCC cells inhibited the proliferation, migration, and invasion capacity of tumor cells. CONCLUSION: B56ε is associated with the microenvironment, immune evasion, and immune cell infiltration of multiple tumors. B56ε plays an important role in HCC progression, supporting it as a prognostic marker and potential therapeutic target for HCC.

8.
Autophagy ; : 1-22, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38433354

RESUMO

Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.

9.
Physiol Plant ; 176(2): e14253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480459

RESUMO

Ferns are primitive vascular plants with diverse morphologies and structures. Plant anatomical traits and their linkages can reflect adaptation to the environment; however, these remain are still poorly understood in ferns. The main objective of this study was to explore whether there was structural coordination among and within organs in fern species. We measured 16 hydraulically related anatomical traits of pinnae, petioles, and roots of 24 representative fern species from the tropical and subtropical forest understory and analyzed trait correlation networks. In addition, we examined phylogenetic signals for the anatomical traits and analyzed co-evolutionary relationships. These results indicated that stomatal density and all petiole anatomical traits exhibited significant phylogenetic signals. Evolutionary correlations were observed between the tracheid diameter and wall thickness of the petiole and between the water transport capacity of the petiole and stomatal density. Conversely, anatomical traits of roots (e.g., root diameter) showed no phylogenetic signals and were not significantly correlated with those of the pinnae and petioles, indicating a lack of structural coordination between the below- and above-ground organs. Unlike angiosperms, vein density is unrelated to stomatal density or pinna thickness in ferns. As root diameter decreased, the cortex-to-stele diameter ratio decreased significantly (enhanced water absorption) in angiosperms but remained unchanged in ferns. These differences lead to different responses of ferns to climate change and improve our knowledge of the water adaptation strategies of ferns.


Assuntos
Gleiquênias , Magnoliopsida , Traqueófitas , Gleiquênias/fisiologia , Filogenia , Evolução Biológica , Água
10.
Hum Cell ; 37(3): 782-800, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509270

RESUMO

Inflammation and immune responses play important roles in cancer development and prognosis. We identified 59 upregulated inflammation- and immune-related genes (IIRGs) in clear cell renal cell carcinoma (ccRCC) from The Cancer Genome Atlas database. Among the upregulated IIRGs, nucleotide binding oligomerization domain 2 (NOD2), PYD and CARD domain (PYCARD) were also confirmed to be upregulated in the Oncomine database and in three independent GEO data sets. Tumor immune infiltration resource database analysis revealed that NOD2 and PYCARD levels were significantly positively correlated with infiltration levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells. Multivariate Cox hazards regression analysis indicated that based on clinical variables (age, gender, tumor grade, pathological TNM stage), NOD2, but not PYCARD, was an independent, unfavorable ccRCC prognostic biomarker. Functional enrichment analyses (GSEA) showed that NOD2 was involved in innate immune responses, inflammatory responses, and regulation of cytokine secretion. Meanwhile, mRNA and protein levels of NOD2 were elevated in four ccRCC cell lines (786-O, ACHN, A498 and Caki-1), and its knockdown significantly inhibited IL-8 secretion, thereby inhibiting ccRCC cell proliferation and invasion. Furthermore, results showed that miR-20b-5p targeted NOD2 to alleviate NOD2-mediated IL-8 secretion. In conclusion, NOD2 is a potential prognostic biomarker for ccRCC and the miR-20b-5p/NOD2/IL-8 axis may regulate inflammation- and immune-mediated tumorigenesis in ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Interleucina-8/genética , Inflamação/genética , Neoplasias Renais/genética , Biomarcadores , MicroRNAs/genética , Proteína Adaptadora de Sinalização NOD2/genética
11.
Plant Dis ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499974

RESUMO

Lily (Lilium brownii var. Viridulum Baker) is a well-known edible plant with large, white and sweet bulb scales that has important medicinal value (Zhou et al. 2021) and is grown mainly in the Hebei, Shanxi and Henan provinces of China. In May 2021, a case of bulb rot was discovered in a 3.33 hm2 plantation in Huaihua, Hunan Province, affecting 20% of the area (27°59'30″N, 110°32'20″E). The disease is most severe during the rainy season in May and June. In the early stage, irregular brown spots appeared on the lily scales, the necrosis was depressed and gradually enlarges, and in the later stage, the scales were scattered from the base of the disc and slough off. Ten samples were taken randomly from different plants in the plantation area to isolate the pathogens. After washing with sterile water, they were cut into small pieces and sterilised with 3% hydrogen peroxide for 30 s, 75% ethanol for 90 s, rinsed three times with sterile water and dried on sterile filter paper, then placed on a water agar plate and incubated in the dark in a constant temperature incubator at 28℃ for 3 to 5 days. After 2 days, the mycelium at the edge of the colony was transferred to a PDA plate and incubated for 3-5 days at 28°C in the dark to obtain pure fungal isolates. Eighteen purified fungal isolates were obtained, of which sixteen looked like Fusarium (88.9% isolation rate) and three representative isolates (BHBR2, BHBR3 and BHBR5) were selected for further study. The surface of this fungus was white with dense aerial mycelium. Some had an orange centre in the medium. Microconidia were oval in shape and appeared either straight or slightly curved. These microconidia were colourless, had 0-1 septa and measured 3.334 to 14.724 × 2.216 to 5.385 µm (n=100). Macroconidia were predominantly three-septate, crescent-shaped structures that were thin-walled and slightly curved. Cells at the apex and base were similarly curved. Macroconidia measured 17.956 to 32.150 × 2.788 to 4.492 µm (n=100). The mitochondrial small subunit (mtSSU) and translation elongation factor 1-α (TEF1) genes were amplified and sequenced using the NMS1/NMS2 and TEF-R/TEF-F primers to verify the identity of the pathogens (Stewart et al. 2006). The sequences were submitted to GenBank (BHBR2: mtSSU, PP273435; TEF, OR900976; BHBR3: mtSSU, PP277729; TEF, OR900977; BHBR5: mtSSU, PP277728; TEF, OR900978). A concatenated phylogenetic tree of the two genes was constructed and analysis showed that BHBR2, BHBR3 and BHBR5 were significantly clustered with Fusarium commune. Based on the results of morphological identification and phylogenetic tree analysis, the three isolates were identified as Fusarium commune. We carried out pathogenicity tests using two methods, one in which 6 × 6 mm fungal blocks were inoculated on lily (L. brownie var. viridulum Baker) scales and controls inoculated with sterile blocks, and the other in which strain BHBR2 was selected to carry out pathogenicity tests on bulbs of live plants soaked with 50 ml of a 1 × 106 conidial suspension and bulbs of control plants soaked with sterile water, all in three replicates. They were placed in a growth chamber at 28°C and 80% relative humidity, and the scales were moistened with moistened sterile filter paper. After 3 days of rearing treated scales, lesions appeared on lily scales inoculated with mycelial blocks and expanded with time, whereas no lesions appeared on lily scales inoculated with sterile blocks. One month later, whole plants soaked in the spore suspension wilted, while the control plants grew well. The pathogens re-isolated from the diseased tissues had the same morphological characteristics as representative isolates. This confirms Koch's hypothesis. Fusarium commune has been shown to be the most important pathogenic fungus causing root rot in Alfalfa (Medicago sativa) (Yang et al. 2022) and blueberry (Vaccinium uliginosum L.) (Li et al. 2023) in China. To our knowledge, this is the first report of Fusarium commune causing lily bulb rot in the world, which will lay the foundation for future control of lily bulb rot.

12.
Health Inf Sci Syst ; 12(1): 26, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38505098

RESUMO

Purpose: To investigate the association between DNA methylation and childhood simple obesity. Methods: Genome-wide analysis of DNA methylation was conducted on peripheral blood samples from 41 children with simple obesity and 31 normal controls to identify differentially methylated sites (DMS). Subsequently, gene functional analysis of differentially methylated genes (DMGs) was carried out. After screening the characteristic DMGs based on specific conditions, the methylated levels of these DMS were evaluated and verified by pyrosequencing. Receiver operating characteristic (ROC) curve analysis assessed the predictive efficacy of corresponding DMGs. Finally, Pearson correlation analysis revealed the correlation between specific DMS and clinical data. Results: The overall DNA methylation level in the obesity group was significantly lower than in normal. A total of 241 DMS were identified. Functional pathway analysis revealed that DMGs were primarily involved in lipid metabolism, carbohydrate metabolism, amino acid metabolism, human diseases, among other pathways. The characteristic DMS within the genes Transcription factor A mitochondrial (TFAM) and Piezo type mechanosensitive ion channel component 1(PIEZO1) were recognized as CpG-cg05831083 and CpG-cg14926485, respectively. Furthermore, the methylation level of CpG-cg05831083 significantly correlated with body mass index (BMI) and vitamin D. Conclusions: Abnormal DNA methylation is closely related to childhood simple obesity. The altered methylation of CpG-cg05831083 and CpG-cg14926485 could potentially serve as biomarkers for childhood simple obesity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-024-00275-w.

13.
BMC Genomics ; 25(1): 293, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504181

RESUMO

BACKGROUND: Alternative splicing (AS) is a principal mode of genetic regulation and one of the most widely used mechanisms to generate structurally and functionally distinct mRNA and protein variants. Dysregulation of AS may result in aberrant transcription and protein products, leading to the emergence of human diseases. Although considered important for regulating gene expression, genome-wide AS dysregulation, underlying mechanisms, and clinical relevance in knee osteoarthritis (OA) remain unelucidated. Therefore, in this study, we elucidated and validated AS events and their regulatory mechanisms during OA progression. RESULTS: In this study, we identified differentially expressed genes between human OA and healthy meniscus samples. Among them, the OA-associated genes were primarily enriched in biological pathways such as extracellular matrix organization and ossification. The predominant OA-associated regulated AS (RAS) events were found to be involved in apoptosis during OA development. The expression of the apoptosis-related gene BCL2L13, XAF1, and NF2 were significantly different between OA and healthy meniscus samples. The construction of a covariation network of RNA-binding proteins (RBPs) and RAS genes revealed that differentially expressed RBP genes LAMA2 and CUL4B may regulate the apoptotic genes XAF1 and BCL2L13 to undergo AS events during OA progression. Finally, RT-qPCR revealed that CUL4B expression was significantly higher in OA meniscus samples than in normal controls and that the AS ratio of XAF1 was significantly different between control and OA samples; these findings were consistent with their expected expression and regulatory relationships. CONCLUSIONS: Differentially expressed RBPs may regulate the AS of apoptotic genes during knee OA progression. XAF1 and its regulator, CUL4B, may serve as novel biomarkers and potential therapeutic targets for this disease.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Processamento Alternativo , RNA Mensageiro/genética , Biomarcadores/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
14.
Microbiol Resour Announc ; 13(3): e0106523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38299820

RESUMO

We report the draft genome sequence of Dietzia sp. strain CH92, isolated from a high temperature oil well in Baolige oilfield, China. The estimated genome is 3.73 Mb, with 3,479 protein-coding sequences.

15.
Org Biomol Chem ; 22(11): 2226-2230, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38363281

RESUMO

An efficient intermolecular annulation of indazole aldehydes with propargylic amines has been developed for the synthesis of pyrazinoindazoles under catalyst- and additive-free conditions. This straightforward methodology was found to feature a wide substrate scope, high atom economy and environmental advantages. The bioactivity results of these new pyrazino[1,2-b]indazoles showed that some of them exhibited significant antifungal activity.

16.
Medicine (Baltimore) ; 103(5): e37078, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306508

RESUMO

To explore the effect of hypoproteinemia on cardiac function and prognosis in elderly male patients with chronic heart failure. Among the patients with chronic heart failure hospitalized in the General Hospital of Southern Theater Command from December 2014 to December 2015, 100 elderly male patients with chronic heart failure were selected. The patients were divided into 2 groups based on their serum albumin (ALB) levels: 53 cases in the normal group (ALB ≥ 35 g/L) and 47 cases in the hypoproteinemia group (ALB < 35 g/L). Using the method of prospective study, under the condition of routine treatment of heart failure, follow-up observation for 5 years, we collected relevant data and analyzed the level of serum ALB, cardiac function and prognosis of patients in these 2 groups. The mortality of patients in the hyporoteinemia group were significantly higher than those in the normal group. Left ventricular end-diastolic dimension (LVDD) and brain natriuretic peptide (BNP) in the normal group after 5 years were markedly lower compared with that in the hypoproteinemia group. The mortality of patients with chronic heart failure with hypoproteinemia were higher, and the present study indicated that the ALB level may be associated with the mortality of patients with chronic heart failure.


Assuntos
Insuficiência Cardíaca , Hipoproteinemia , Humanos , Masculino , Idoso , Estudos Prospectivos , Prognóstico , Doença Crônica , Peptídeo Natriurético Encefálico
17.
Neural Netw ; 173: 106150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330747

RESUMO

Accurate short-term load forecasting (STLF) is crucial for maintaining reliable and efficient operations within power systems. With the continuous increase in volume and variety of energy data provided by renewables, electric vehicles and other sources, long short-term memory (LSTM) has emerged as an attractive approach for STLF due to its superiorities in extracting the dynamic temporal information. However, traditional LSTM training methods rely on stochastic gradient methods that have several limitations. This paper presents an innovative LSTM optimization framework via the alternating direction method of multipliers (ADMM) for STLF, dubbed ADMM-LSTM. Explicitly, we train the LSTM network distributedly by the ADMM algorithm. More specifically, we introduce a novel approach to update the parameters in the ADMM-LSTM framework, using a backward-forward order, significantly reducing computational time. Additionally, within the proposed framework, the solution to each subproblem is achieved by utilizing either the proximal point algorithm or local linear approximation, preventing the need for supplementary numerical solvers. This approach confers several advantages, including avoiding issues associated with exploding or vanishing gradients, thanks to the inherent gradient-free characteristics of ADMM-LSTM. Furthermore, we offer a comprehensive theoretical analysis that elucidates the convergence properties inherent to the ADMM-LSTM framework. This analysis provides a deeper understanding of the algorithm's convergence behavior. Lastly, the efficacy of our method is substantiated through a series of experiments conducted on two publicly available datasets. The experimental results demonstrate the superior performance of our approach when compared to existing methods.


Assuntos
Algoritmos , Memória de Longo Prazo , Previsões
18.
Angew Chem Int Ed Engl ; 63(13): e202319489, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38308123

RESUMO

Alveolar echinococcosis (AE) is a zoonotic parasitic disease, resulting from being infected with the metacestode larvae of the tapeworm Echinococcus multilocularis (E. multilocularis). Novel prophylactic and therapeutic interventions are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. Bioengineered nano cellular membrane vesicles are widely used for displaying the native conformational epitope peptides because of their unique structure and biocompatibility. In this study, four T-cells and four B-cells dominant epitope peptides of E. multilocularis with high immunogenicity were engineered into the Vero cell surface to construct a membrane vesicle nanovaccine for the treatment of AE. The results showed that the nanovesicle vaccine can efficiently activate dendritic cells, induce specific T/B cells to form a mutually activated circuit, and inhibit E. multilocularis infection. This study presents for the first time a nanovaccine strategy that can completely eliminate the burden of E. multilocularis.


Assuntos
Equinococose , Echinococcus multilocularis , Vacinas , Animais , Imunoterapia , 60547 , Epitopos , Peptídeos
19.
Chin Med ; 19(1): 25, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360724

RESUMO

Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.

20.
Front Physiol ; 15: 1337554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332988

RESUMO

Background and object: Mitotic count (MC) is a critical histological parameter for accurately assessing the degree of invasiveness in breast cancer, holding significant clinical value for cancer treatment and prognosis. However, accurately identifying mitotic cells poses a challenge due to their morphological and size diversity. Objective: We propose a novel end-to-end deep-learning method for identifying mitotic cells in breast cancer pathological images, with the aim of enhancing the performance of recognizing mitotic cells. Methods: We introduced the Dilated Cascading Network (DilCasNet) composed of detection and classification stages. To enhance the model's ability to capture distant feature dependencies in mitotic cells, we devised a novel Dilated Contextual Attention Module (DiCoA) that utilizes sparse global attention during the detection. For reclassifying mitotic cell areas localized in the detection stage, we integrate the EfficientNet-B7 and VGG16 pre-trained models (InPreMo) in the classification step. Results: Based on the canine mammary carcinoma (CMC) mitosis dataset, DilCasNet demonstrates superior overall performance compared to the benchmark model. The specific metrics of the model's performance are as follows: F1 score of 82.9%, Precision of 82.6%, and Recall of 83.2%. With the incorporation of the DiCoA attention module, the model exhibited an improvement of over 3.5% in the F1 during the detection stage. Conclusion: The DilCasNet achieved a favorable detection performance of mitotic cells in breast cancer and provides a solution for detecting mitotic cells in pathological images of other cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...